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Zero-sum stochastic games
with perfect observation of the state (1)

A zero-sum stochastic game (with perfect observation of the state)
is a 5-tuple (Ω, I , J, g ,P), where:

• Ω is a non-empty set of states;

• I is a non-empty set of actions of player 1;

• J is a non-empty set of actions of player 2;

• g : I × J × Ω→ R is a payoff function of player 1;

• P : I × J × Ω→ ∆(Ω) is a transition probability function.

We assume that I , J,Ω are finite.
∆(Ω) := the set of probability measures on Ω.
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Zero-sum stochastic games
with perfect observation of the state (2)

A stochastic game (Ω, I , J, g ,P) proceeds in stages as follows. At
each stage n:

1. The players observe the current state ωn;

2. Players choose their mixed actions, xn ∈ ∆(I ) and yn ∈ ∆(J);

3. Pure actions in ∈ I and jn ∈ J are chosen according to
xn ∈ ∆(I ) and yn ∈ ∆(J);

4. Player 1 obtains a payoff gn = g(in, jn, ωn), while player 2
obtains payoff −gn;

5. The new state wn+1 is chosen according to the probability law
P(in, jn, ωn).

The above description of the game is known to the players.
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Strategies and total payoff

• Strategies σ, τ of players consist in choosing at each stage a
mixed action;

• The players can take into account the previous actions of
players, as well as the current and previous states.

• λ-discounted total payoff: Eωσ,τ

(
λ
∞∑
i=1

(1− λ)i−1gi

)
;

• Depends on λ ∈ (0, 1), initial state ω, and strategies of the
players;

• Value vλ : Ω→ R:

vλ(ω) = sup
σ

inf
τ
Eωσ,τ

(
λ
∑∞

i=1
(1− λ)i−1gi

)
= inf

τ
sup
σ

Eωσ,τ

(
λ
∑∞

i=1
(1− λ)i−1gi

)
.
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Limit of λ-discounted game Γλ

• vλ(ω) = sup
σ

inf
τ
Eωσ,τ

(
λ
∑∞

i=1(1− λ)i−1gi
)
;

• One can ask: what happens if players become more and more
patient? I.e., players are willing to wait a lot to obtain a big
payoff;

• Mathematically, it means that λ→ 0;

• Thus, one is interested in the uniform (in ω) limit
limλ→0 vλ(ω);

• The limit always exists in the finite framework, but may fail to
exits in a more general setting.
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Kernel

• Kernel q : I × J × Ω→ R|Ω|.

q(i , j , ω)(ω′) =

{
P(i , j , ω)(ω′) if ω 6= ω′;

P(i , j , ω)(ω′)− 1 if ω = ω′.

• Recall that P(i , j , ω)(ω′) is the probability that the next state
is ω′, if the current state is ω and players’ actions are (i , j);

• Hence the closer kernel q is to 0, the more probable it is that
the next state coincides with the current one.
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Stochastic games with stage duration

• Consider a family of stochastic games Gh, parametrized by
h ∈ (0, 1];

• h represents stage duration;

• Players now play at times 0, h, 2h, . . ., instead of playing at
times 0, 1, 2, . . .;

• State space Ω and action spaces I and J of player 1 and
player 2 are independent of h;

• Payoff function gh of player 1 and kernel qh depend on h.
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Stochastic games with stage duration

• Payoff gh = hg ;

• Kernel qh = hq;

• h = 1: “Usual” stochastic game;

• When h small, gh is close to zero (players receive almost
nothing each turn), and qh is close to zero (the next state
with a high probability will be the same).
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Comparison (1)

0x 1x 2x 3x
Time

Players choose actions at these times

Stage 1
payoff g
kernel q

Stage 2
payoff g
kernel q

Stage 3
payoff g
kernel q

Figure: ”Usual” stochastic game: duration of each stage is 1
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Comparison (2)

0x hx 2hx 3hx 4hx 5hx 6hx
Time

Players choose actions at these times

Stage 1

payoff hg

kernel hq

Stage 2

payoff hg

kernel hq

Stage 3

payoff hg

kernel hq

Stage 4

payoff hg

kernel hq

Stage 5

payoff hg

kernel hq

Stage 6

payoff hg

kernel hq

Figure: Stochastic game with stage duration h: stage payoff and kernel
are proportional to h
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Discounted games with stage duration

• For a game with stage duration h, the total payoff is
(depending on the discount factor λ, initial state ω, and
strategies σ, τ of players)

Eωσ,τ

(
λ

∞∑
k=1

(1− λh)k−1(gk)h

)
;

• Why such a choice? Easy explanation:

• The total payoff is λ-discounted game with stage duration 1 is
Eωσ,τ

(
λ
∑∞

k=1(1− λ)k−1gk
)
. The total payoff of λ-discounted

game with stage duration h is Eωσ,τ
(∑∞

k=1 λh(1− λh)k−1gk
)
;

• So, it may be seen as a game with discount factor λh. I.e.,
the discount factor is proportional to h, just as the payoff g
and the kernel q.
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Real meaning behind the total payoff of the game with
stage duration h

• Total payoff: Eωσ,τ
(
λ
∑∞

k=1(1− λh)k−1(hgk)
)
;

• When h is small, the total payoff of the λ-discounted
stochastic game with stage duration h is close to the total
payoff of the analogous λ-discounted continuous-time game;

• In a continuous-time game, players can choose actions at any
time, and at each time t they receive instantaneous payoff gt .
The total payoff is (depending on the discount factor λ)∫∞

0 λe−λtgtdt.
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Papers about games with stage duration

• “Stochastic games with short-stage duration” by Abraham
Neyman (2013);

• “Operator approach to values of stochastic games with
varying stage duration” by Sylvain Sorin and Guillaume
Vigeral (2016).
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Discounted games with stage duration (main properties)

• We denote by vh,λ the value of the game with total payoff
Eωσ,τ

(
λ
∑∞

k=1(1− λh)k−1(gk)h
)
;

• Main question: What happens with vh,λ when h→ 0?

Proposition (A. Neyman)

limh→0 vh,λ exists and is a unique solution of a functional equation.

Proposition (S. Sorin, G. Vigeral)

limλ→0 limh→0 vh,λ exists if and only if limλ→0 v1,λ exists, and in
the case of existence we have limλ→0 limh→0 vh,λ = limλ→0 v1,λ.

• limλ→0 v1,λ should be considered as the limit value of the
discrete-time stochastic game, whereas limλ→0 limh→0 vh,λ
should be considered as the limit value of analogous
continuous-time game.
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Stochastic Games with Public Signals (1)

• Now players cannot perfectly obseserve the current state;

• Players know the initial probability distribution on the states
and some information about the current state.
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Stochastic Games with Public Signals (2)

A zero-sum stochastic game with public signals is a 7-tuple
(A,Ω, f , I , J, g ,P), where:

• A is a non-empty set of signals;

• Ω is a non-empty set of states;

• f : Ω→ A is a partition of Ω;

• I is a non-empty set of actions of player 1;

• J is a non-empty set of actions of player 2;

• g : I × J × Ω→ R is stage payoff function of player 1;

• P : I × J × Ω→ ∆(Ω) is the transition probability function.

We assume that I , J,Ω,A are finite.
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Stochastic Games with Public Signals (3)

The game (A,Ω, f , I , J, g ,P) proceeds in stages as follows. At
each stage n:

1. The current state is ωn. Players do not observe it, but they
observe the signal αn = f (ωn) ∈ A and the actions of each
other at the previous stage;

2. Players choose their mixed actions, xn ∈ ∆(I ) and yn ∈ ∆(J);

3. Pure actions in ∈ I and jn ∈ J are chosen according to
xn ∈ ∆(I ) and yn ∈ ∆(J);

4. Player 1 obtains a payoff gn = g(in, jn, ωn), while player 2
obtains payoff −gn;

5. The new state wn+1 is chosen according to the probability law
P(in, jn, ωn). The new signal is αn+1 = f (ωn+1).

The above description of the game is known to the players.
Players do not observe the payoff.
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An example of the partition function f (1)

w1

w2

w3

w4

w5

w6

α

β

γ

There are 3 public signals, and f (w1) = f (w2) = f (w3) = α,
f (w4) = f (w5) = β, f (w6) = γ.
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Examples of the partition function f (2)

w1

w2

w3

w4

w5

w6

α1

α2

α3

α4

α5

α6

The perfect observation of the state, i.e. there are 6 public signals
α1, . . . , α6; and f (wi ) := αi .
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Examples of the partition function f (3)

w1

w2

w3

w4

w5

w6

α

The state-blind case. There is only one signal α, and f (wi ) := α
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Stage duration

• We still can consider games with stage duration h in this new
setting;

• Payoff gh = hg ;

• Kernel qh = hq;

• State space Ω, signal set A, partition function f , and action
spaces I and J of player 1 and player 2 are independent of h;

• The total payoff is still Eωσ,τ
(
λ
∑∞

k=1(1− λh)k−1(gk)h
)
;

• vh,λ is the value of the game with such a total payoff.
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An example (stage duration 1)

0Starting state S1 0 S2

−1∗S3 +1∗ S4

C

C
Q Q

Figure: 1-player game in which each stage has duration 1

• Perfect observation of the state: Play C and later Q.

• State-blind case: the same!
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An example (vanishing stage duration)

0 0

−h∗ +h∗

C , h

C , 1− h

Q, 1− h
C , h

C , 1− h

Q, 1− h

Q, h Q, h

Figure: 1-player game with stage duration h

• Perfect observation of the state: Player will end up in the
state S4. Thus limh→0 vh,λ = 1

(1+λ)2 .
• State-blind case: We can prove that the player will play C

forever. Thus limh→0 vh,λ = 0.



27/36

Stoch. games with perfect observ. of the state Games with stage duration Games with stage duration and public signals

First result

Theorem
In the state-blind case, the uniform limit limh→0 vh,λ exists and is a
unique viscosity solution of a partial differential equation.

• The proof is similar to the proof of a similar result in the
paper of Sylvain Sorin (2018) ”Limit Value of Dynamic
Zero-Sum Games with Vanishing Stage Duration”.
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Limit value in games with public signals

• We consider lim
λ→0

vh,λ;

• Even in finite setting, lim
λ→0

vh,λ may not exist;

• First example of inexistence is in the paper of Bruno Ziliotto
(2016) “Zero-sum repeated games: Counterexamples to the
existence of the asymptotic value and the conjecture maxmin
= lim vn”;

• A similar counterexample is in the paper of Bruno Ziliotto and
Jérôme Renault (2020) “Hidden stochastic games and limit
equilibrium payoffs”;

• We now consider a game which is equivalent to the game
from the latter paper.
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Second result (1)

Theorem
There is a stochastic game G with public signals in which the
uniform limit limλ→0 limh→0 vh,λ exists, but the pointwise limit
limλ→0 v1,λ does not exist.

ω4p4

ω5p5

ω∗6p6

ω1 p1

ω2 p2

ω∗3 p3

Signal PLUS
Payoff +1
Player 1’s actions: T ,M,B
Player 2’s actions: L,M,R,Q

Signal MINUS
Payoff −1

Player 1’s actions: T ,B,Q
Player 2’s actions: L,R
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Second result (2)

The transition matrices for non-absorbing states:

State ω1:

L R

T ω1 ω2

B ω2 ω1

Q ω5 ω5

State ω2:

L R

T 1
2ω1 + 1

2ω2 ω2

B ω2
1
2ω1 + 1

2ω2

Q ω∗3 ω∗3

State ω4:

L M R Q

T ω4 ω5 ω5 ω2

M ω5 ω4 ω5 ω2

B ω5 ω5 ω4 ω2

State ω5:

L M R Q

T 2
3ω4 + 1

3ω5 ω5 ω5 ω∗6
M ω5

2
3ω4 + 1

3ω5 ω5 ω∗6
B ω5 ω5

2
3ω4 + 1

3ω5 ω∗6
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Informal proof (1)

0 1/2x1/4x1/8x1/16xxxx 1x
Possible beliefs that the current state is ω2ω2ω2

Figure: Discrete case (i.e. stage duration is h = 1). Possible beliefs of
player 1 that the current state is ω2 if player 2 plays optimally. As λ
becomes smaller, player 1 can wait longer and longer to achieve higher
probabilities.

• If the current signal is LEFT, then the smaller is the discount
factor λ, the smaller is player 1 can make his belief that the
current state is ω2;

• Analogously, if the current signal is RIGHT, then the smaller
is λ, the smaller is player 2 can make his belief that the
current state is ω5;

• Because of that, there is an oscillation when λ→ 0.
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Informal proof (2)

0 2/3 1

p

Player 1 immediately starts playing Q

Player 1 plays C until it gets
sufficiently close to p = 2/3.

Figure: Continuous case (i.e. h ≈ 0) with small λ. With prob. p < 2/3 that
the current state is ω2, player 1 should immediately start playing Q. Otherwise,
his belief p̃ will start to increase until it becomes p̃ = 2/3, which is bad for
player 1. With prob. p ≥ 2/3 that the current state is ω2, player 1 can very
quickly decrease his belief p̃ until it becomes p̃ ≈ 2/3, which is good for him.

p p + h− hpp− hp
2

Prob.12
hp
2

Prob.12
h− hp

(a) p > 2/3 and player 1 plays not Q.
E(p̃ − p) = 1

2
(h − hp) + 1

2
· −hp

2
=

h
4
(2− 3p) < 0, thus if λ is small, then

player 1 prefers do not play Q until p̃
is close to 2/3.

p p + h− hpp− hp
2

Prob.12
hp
2

Prob.12
h− hp

(b) p < 2/3 and player 1 plays not Q.
E(p̃ − p) = 1

2
(h − hp) + 1

2
· −hp

2
=

h
4
(2− 3p) > 0, thus player 1 prefers to

play Q until the state changes.

Figure: Continuous case with player 1 playing C : What happens with the
probability p that the current state is ω2.



33/36

Stoch. games with perfect observ. of the state Games with stage duration Games with stage duration and public signals

Informal proof (3)

• Thus very there is a threshold p = 2/3 which player 1 cannot
cross;

• So, the state is going to get absorbed with prob. 2/3;

• Similarly, there is a threshold p = 3/4 which player 2 cannot
cross;

• So, the state is going to get absorbed with prob. 3/4;

• Thus there is no oscillation as λ→ 0.
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Theorem
There is a stochastic game G with public signals in which the
uniform limit limλ→0 limh→0 vh,λ exists, but the pointwise limit
limλ→0 v1,λ does not exist.

Open question: For the considered above game G , can we say that

1. For any fixed h ∈ (0, 1], the limit lim
λ→0

vh,λ does not exist?

2. We have

∣∣∣∣lim sup
λ→0

vh,λ(p)− lim inf
λ→0

vh,λ(p)

∣∣∣∣→ 0 as h→ 0,

uniformly in p?
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Generalization: varying stage duration

• Now we allow different stage durations for different stages;

• There is a sequence {hi}i∈N;

• Players act in times h1, h1 + h2, h1 + h2 + h3, . . .;

• i-th stage payoff is hig and i-th stage kernel is hiq;

• Total payoff is now

λ

∞∑
i=1

i−1∏
j=1

(1− λhj)

 higi .

• The analogues of the above theorems hold in this more
general model. We suppose now that sup hi → 0.
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This is all.

Thank you!
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